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ABSTRACT

A statistical downscaling model was developed with reanalysis data and applied to forecast northern China

summer rainfall (NCSR) using the outputs of the real-time seasonal Climate Forecast System, version 2

(CFSv2). Large-scale climate signals in sea level pressure, 850-hPameridional wind, and 500-hPa geopotential

height as well as several well-known climate indices were considered as potential predictors. Through cor-

relation analysis and stepwise screening, two ‘‘optimal’’ predictors (i.e., sea level pressure over the south-

western Indian Ocean and 850-hPa meridional wind over eastern China) were selected to fit the regression

equation.Model reliability was validatedwith independent data during a test period (1991–2012), in which the

simulated NCSR well represented the observed variability with a correlation coefficient of 0.59 and a root-

mean-square error of 18.6%. The statistical downscaling model was applied to forecast NCSR for a 22-yr

period (1991–2012) using forecast predictors from the CFSv2 with lead times from 1 to 6 months. The results

showedmuch better forecast skills than that directly from the CFSv2 for all lead months, except the 3-month-

lead example. The biggest improvement occurred in the 1-month-lead forecast, in which the hit rate increased

to 77.3% from 45.5% in the CFSv2 forecast. In the forecast of rainfall at 15 stations, the statistical downscaling

model also showed superior capability when compared with the CFSv2, with forecast skill being improved at

73% of stations. In particular, 13 of 15 stations obtained a hit rate exceeding 55%.

1. Introduction

As one of the particular focuses of the World Climate

Research Programme’s Climate Variability and Predict-

ability (CLIVAR) project, seasonal forecasting is of great

significance. Although state-of-the-art climate models

have been improved significantly and have been verified to

be useful tools for seasonal forecasting, their forecast skill

for precipitation, especially for Asian summer monsoon

precipitation, remains limited (Wu et al. 2009; Lee et al.

2011). North China, with its enormous population and

rapid social and economic development, is located at the

northern boundary of the East Asia subtropical mon-

soon region and receives the bulk of its annual rainfall

during boreal summer, primarily falling in July and

August. The north China summer rainfall (NCSR) var-

iability is influenced by both the mid- to high-latitude

circulation patterns and the East Asian summer mon-

soon system, of which the location and magnitude of the

Corresponding author address: Dr. Jianping Li, State Key Lab-

oratory of Numerical Modeling for Atmospheric Sciences and

Geophysical Fluid Dynamics, Institute of Atmospheric Physics,

Chinese Academy of Sciences, Beijing 100029, China.

E-mail: ljp@lasg.iap.ac.cn

JULY 2014 GUO ET AL . 1739

DOI: 10.1175/JAMC-D-13-0207.1

� 2014 American Meteorological Society

mailto:ljp@lasg.iap.ac.cn


western North Pacific subtropical high (WNPSH) play

the most important role (Zhao and Song 1999; Huang

et al. 2008). As such, NCSR has complicated variability

on both interannual and interdecadal scales (Huang

et al. 1999; Lu 2003; Fu et al. 2009). North China is one of

the regions frequently plagued by severe droughts and

floods (Wu et al. 2012a,b). Seasonal forecasting of

NCSR is an important issue that is directly related di-

saster prevention and mitigation. However, improving

the forecast skill for NCSR has long been a challenge for

Chinesemeteorologists (Peng et al. 2006; Fan et al. 2009;

Wei and Huang 2010).

General circulationmodels (GCMs) are generally good

at simulating large-scale climate variables (e.g., mean sea

level pressure); they are unable to capture subgrid pro-

cesses, however, and fail to simulate rainfall on region-

al and subregional scales (Hewitson and Crane 2006).

Because of this limitation, a statistical downscaling tech-

nique has emerged and has experienced rapid improve-

ment in the past few decades. This technique describes

the regional climate via a statistical relationship linked

to large-scale climate signals that can be well simulated

by GCMs (Zorita and von Storch 1999; Fowler et al.

2007). The statistical downscaling technique has been

widely applied to forecasting and predicting regional

climate (Charles et al. 1999; Benestad 2002; Landman and

Goddard 2002; Oshima et al. 2002; Feddersen and

Andersen 2005; Chu et al. 2008; Zhu et al. 2008; Li and

Smith 2009; Juneng et al. 2010; Chen et al. 2012; Guo

et al. 2012; Liu and Fan 2012). With the demand for im-

proving the operational forecast skill for NCSR in mind,

in this paper we intend to develop a statistical down-

scaling model of NCSR and apply it to produce forecasts

with lead times extending to 6 month, using the National

Centers for Environmental Prediction’s (NCEP) Climate

Forecast System, version 2 (CFSv2).

The remainder of this paper is structured as follows.

Sections 2 and 3 introduce the data and the statisti-

cal downscaling scheme. The performance of the statistical

model is provided in section 4. In section 5, the statistical

model is applied to forecast NCSR and rainfall at 15

individual stations for a 22-yr period (1991–2012) using

the CFSv2. A summary and discussion are presented in

section 6.

2. Data

Observed precipitation data were obtained from

China’s 160-station monthly rainfall dataset provided by

the ChinaMeteorological Administration (CMA) for the

period 1951–2012. The north China region was defined as

a box bounded by 358–408N, 1108–1228E. The averaged

summer (July and August) rainfall totals at 15 uniformly

spread stations in northChina (Fig. 1a) were generated as

the NCSR time series. As shown in Fig. 1b, a significant

decreasing trend exists inNCSRduring the past 62 yr that

contains remarkable interannual and decadal variations.

Reanalysis data were used to establish the statistical

downscaling model. Sea level pressure (SLP), 850-hPa

meridional wind (V850), and 500-hPa geopotential height

(GHT500) were used as potential predictor variables that

represent large-scale circulation anomalies as the basis for

precipitation. Several well-known large-scale climate in-

dices were also used as potential predictors. The Niño-3.4
index was used to represent the ENSO phenomenon
(available online at http://www.cpc.noaa.gov/data/indices/).
The southern annular mode index (SAMI) is defined as

the difference in normalized monthly zonal-mean SLP

between 408 and 708S (Nan and Li 2003) and is available

online (at http://web.lasg.ac.cn/staff/ljp/dataset.html/). The

Indian Ocean dipole index (IODI) was calculated fol-

lowing the definition proposed by Saji et al. (1999). The

index of the latitude location of the WNPSH ridge was

calculated over 1108–1508Eusing the 500-hPa geopotential

height following the definition provided by the CMA. The

EastAsian summermonsoon index (EASMI) is defined as

the area-averaged dynamical normalized seasonality at

850hPa within the domain 108–408N, 1108–1408E (Li and

FIG. 1. (a) Locations of rain gauge stations in the north China region (358–408N, 1108–1228E). (b) Time series of north

China July–August rainfall and its linear trend over 1951–2012.
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Zeng 2002, 2003; Li et al. 2010) and is available online

(http://web.lasg.ac.cn/staff/ljp/dataset.html). The atmo-

spheric data were obtained from the NCEP–National

Center for Atmospheric Research (NCAR) reanalysis

dataset on a 2.58 3 2.58 grid, and the sea surface temper-

ature (SST) data were obtained from the Hadley Centre

SST dataset on a 18 3 18 grid.
To verify the forecast capability of the statistical

downscaling model, CFSv2 monthly data covering the

31-yr period of 1982–2012 from the retrospective fore-

cast experiment (1982–2010) and the operational fore-

cast (2011–12) were employed (Saha et al. 2012). CFSv2

is the second version of fully coupled dynamical sea-

sonal prediction systems developed at the Environmental

Modeling Center at NCEP and became operational in

2011. It initiated every month with an integration period

of 9months. In every forecast, 24memberswere designed

with different initial conditions (different starting times).

As a matter of convenience, only the ensemble mean,

which was calculated as the simple average of 24 mem-

bers (equal weight), was used in this study.

3. Statistical downscaling scheme

A multilinear regression approach is used to develop

the statistical downscaling model. Correlation analysis is

first used to identify potential predictors on a global

scale, from which the predictors are further selected with

a cross-validation-based stepwise regressionmethod to fit

the final regression equation.

Given the predictor variable, we calculate the corre-

lation map between the predictor variable field and the

predictand. To avoid any relationship that may arise

from trends in the predictand as well as the predictor

variable, all data are detrended before calculating the

correlation coefficient. Any large-scale domain with

a significant correlation coefficient is identified, and the

corresponding area-weighted average value is calcu-

lated into an index as a potential predictor. A running

correlation between the potential predictor and the

predictand is then conducted to ensure a stable and ro-

bust correlated relationship. Not every potential pre-

dictor is necessary in fitting the final regression equation.

A stepwise regressionmethod nested with leave-five-out

cross validation (Wu et al. 2009) is utilized to select the

optimal predictors from the original potential pre-

dictors. Details of this statistical downscaling scheme are

available in the study by Guo et al. (2012).

In addition, an independent test was carried by di-

viding the whole dataset into a training period (1951–90)

and an independent test period (1991–2012). To quan-

tify the uncertainty degree of the prediction, a bootstrap

resampling approach (Stine 1985) was employed to ob-

tain the 95% confidence interval from the spread of 1000

bootstrap samples with random replacement.

4. Statistical downscaling model of NCSR

Figure 2 shows the correlation maps of the detrended

time series between NCSR and three circulation fields

during the training period (1951–90). Six domains hav-

ing significant correlation coefficients at the 0.01 level

are identified, and the area-weighted average values

over these six domains are calculated into indices, labeled

as SLP(1)–(3), V850, and GHT(1)–(2). All six indices are

significantly correlated withNCSR (Table 1). In addition,

severalwell-known large-scale climate indices, such as the

Niño-3.4 index, SAMI, EASMI, the index of the latitude

FIG. 2. Correlation of detrended time series between NCSR and (a) sea level pressure, (b) 850-hPa meridional wind, and (c) 500-hPa

geopotential height for the period 1951–90. The shading indicates statistical significance at the 0.01 level. Red rectangles indicate areas

having high correlation coefficients.
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location of the WNPSH ridge, and IODI, which have
impacts on global climate, are also taken into account as
potential predictors.
To examine the stability of the correlation coefficients

between the potential predictors and NCSR, a running

correlationwith a 21-yr slidingwindow is conducted on the

detrended time series (Fig. 3). It appears that five indices of

SLP(2)–(3), V850, and GHT500(1)–(2) have stable significant

correlations with NCSR (at the 0.05 level), while the rest

do not have stable significant correlations with NCSR.

Therefore, the indices of SLP(2)–(3),V850, andGHT500(1)–(2)

are retained and used with the stepwise screening pro-

cedure, while the others are excluded.

In the stepwise screening procedure, the potential

predictors for SLP(2) and V850 are successively selected

into the regression equation because they produce

minimum root-mean-square errors (RMSEs) in cross

validation of 52.13mm in step 1 and 50.11mm in step 2,

respectively. No further decrease in RMSE is found

by adding additional predictors into the regression

equation. Thus, SLP(2) and V850 are selected, and the

regression equation is finally fitted in the form given by

Y(t)5 320:52 38:8SLP
(2)(t)1 19:6V850(t) , (1)

where Y(t) is NCSR at year t (t5 1, . . . , 40) over the

1951–90 period and SLP(2)(t) and V850(t) are the tth ob-

served values of the normalized indices of the SLP av-

eraged over the southwestern Indian Ocean (IO) and

the 850-hPa meridional wind averaged over eastern

China, respectively. Note that the regression coefficients

of SLP(2) and V850 are both found to be significantly dif-

ferent from 0 at the 0.05 level by using the Student’s t test.

The empirical relationship derived between the pre-

dictors and the predictand should be physically inter-

pretable. In this regard, we explore the associated

circulations that link the predictors SLP(2) and V850 with

the NCSR.

The first predictor SLP(2) represents the SLP over the

southwestern IO and is associated with the ENSO-

related SST pattern (Fig. 4a). The correlation coef-

ficient between SLP(2) and the Niño-3.4 index is 0.47
(0.49 for the detrended time series), significant at the
0.05 level. From the partial correlation map between
SLP(2) and the surface air temperature field after linearly

TABLE 1. Definitions of potential predictors and their correlation coefficients with NCSR for the period 1951–90.

Variable Level Area Label

Correlation

Raw Detrended

Sea level pressure Surface 258–508N, 908–1158E SLP(1) 20.6 20.52

Sea level pressure Surface 358–158S, 458–1208E SLP(2) 20.72 20.67

158S–58N, 458–858E
Sea level pressure Surface 62.58–52.58S, 1008–1408E SLP(3) 0.64 0.58

Meridional wind 850 hPa 208–47.58N, 1058–1258E V850 0.63 0.61

Geopotential height 500 hPa 108S–108N, 508–1308E GHT500(1) 20.64 20.57

Geopotential height 500 hPa 358–208S, 608–958E GHT500(2) 20.69 20.65

FIG. 3. The 21-yr sliding-window correlations of NCSR with six potential predictors—

SLP(1)–(3),V850, andGHT500(1)–(2)—and several large-scale climate indices for the period 1951–90.

Red (green) horizontal lines denote significance at the 0.05 (0.01) level. All trends associated

with the sliding window have been removed.
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removing the Niño-3.4 index (Fig. 4b), the surface air

temperature over the northwestern Pacific Ocean (west-

ern Pacific warm pool) exhibits significant correlation,

indicating that the SLP increase over the southwestern IO

is possibly relevant to the warming over the western Pa-

cific warm pool as well as the eastern tropical Pacific.

Figure 4c shows the correlation of the detrended

SLP(2) with the surface winds. It appears that, corre-

sponding to the SLP increase over the southwestern IO,

the low-level northward cross-equatorial current at 708–
1008E is intensified. The current turns to a southwesterly

direction after crossing the equator and encountering

the northeast trade winds, enhancing the low-level

convergence in the intertropical convergence zone

over the southern South China Sea and the Philippine

Sea. Anomalous low-level convergence drives a positive

meridional circulation anomaly in the north, one branch

of which, the surface northerly anomaly on the eastern

Asian coast, inhibits the northward expansion of the

warm and wet monsoon flows. Meanwhile, the de-

scending branch of the positive meridional circulation is

approximately distributed at 408N, resulting in north

China being under the influence of downdrafts (Fig. 4d).

Under the conditions of deficient moisture and an

FIG. 4. Correlation of detrended time series between SLP(2) and (a) sea surface temperature, (b) surface air

temperature after linearly removing the Niño-3.4 index, (c) surface winds, and (d) meridional circulation along
a latitude–pressure cross section averaged over 1008–1408E. Significance at the 0.05 level is denoted by shading in

(a), (b), and (d) and with vectors in (c), plotted only if the correlation coefficients for both the u and y directions are

significant. (e) Normalized time series of SLP(2) (open circles) and NCSR (filled circles).
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anomalous downward airstream, precipitation is sup-

pressed over north China. Figure 4e shows the normal-

ized time series of SLP(2) and NCSR. It is obvious that

a negatively correlated relationship indeed exists be-

tween these two time series. In brief, SLP(2) is negatively

associated with NCSR via a meridional circulation that

NCSR is suppressed (enhanced) when SLP(2) is a posi-

tive (negative) anomaly.

The second predictor V850 represents the meridional

wind over eastern China. Figure 5a shows a correlation

map of the detrended time series between V850 and the

horizontal winds and geopotential height at 850 hPa.

Corresponding to the positive V850 anomaly (i.e., the

southerly anomaly), an anomalous cyclone appears in

eastern Asia, and an anomalous anticyclone appears in

the northwestern Pacific. The composite of 500-hPa

geopotential height and the WNPSH ridge in the

strong and weak V850 cases (anomalies exceeding one

standard deviation in the detrended time series) are

shown in Fig. 5b. It is obvious that a northward shift of the

western part of the WNPSH concurrently occurs with

the anomalous strong V850. The correlation coefficient

between the index of latitude location of the WNPSH

ridge andV850 is 0.29, which is significant at the 0.05 level.

This suggests that the latitude location of the WNPSH

ridge may affect the meridional wind over eastern China

that modulates the water vapor transport from the South

China Sea and thewestern Pacific to northChina. IfV850 is

a positive anomaly, more warm and humid air is trans-

ported to the north, resulting in an anomalous wet sum-

mer in north China and vice versa. This result is consistent

with the findings reported upon in the study of Li et al.

(2012). Figure 5c shows the normalized time series ofV850

and NCSR, revealing the generally consistent variation.

Figure 6a compares the observed and simulated

rainfall amounts during both the training period (1951–

90) and the independent test period (1991–2012). The

uncertainty in terms of 95% confidence intervals is in-

dicated with blue dashed lines. In general, the statistical

model provides a relatively accurate representation of

the observations. The performance evident in the training

period is mostly maintained during the subsequent veri-

fication period. The correlation coefficient and RMSE

between the simulated and observed rainfall amounts are

FIG. 5. (a),(c) As in Fig. 4, but for V850 with horizontal winds and geopotential height at the 850-hPa level.

(b) Composite of the 500-hPa geopotential height and the ridge in the strong (red) and weak (black) V850 cases

(anomalies exceeding 1 standard deviation in the detrended time series).
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0.76 and 46.6mm (15.1% of the climatology) during the

training period and 0.59 and 57.5mm (18.6% of the cli-

matology) during the independent test period.

5. Application of the statistical downscaling model
to forecasting NCSR

To test the forecast capability of NCSR using the

statistical downscaling model in Eq. (1), a forecast

experiment for a 22-yr period (1991–2012) was per-

formed using the predictors forecast ahead by the CFSv2.

To reduce the systematic bias in CFSv2, such as cli-

matology drift, we first adjusted the CFSv2 output by

correcting the climatology bias. On account of the

limited extension of the CFSv2 retrospective forecast

data (starting from 1982), the climatology bias was

calculated based on the period starting from 1982 to the

prior year.

FIG. 6. (a) Observed (black) and simulated (red) NCSRwith the statistical downscaling model during the training period (1951–90) and

independent test period (1991–2012). (b) Observed (black) and 1-month-lead forecast NCSR anomalies from the CFSv2 (green) and the

statistical downscaling model (red) during 1991–2012. Blue dashed lines indicate 95% confidence intervals. The forecast skill for NCSR

with lead times based on the statistical downscaling model (red) and the CFSv2 (green) as measured by (c) correlation coefficient,

(d) RMSE, and (e) hit rate, the ratio of years in which the anomaly sign is correctly forecast to the total number of years.
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Figure 6b shows the 1-month-lead NCSR anomaly

forecast by both the CFSv2 and the statistical down-

scaling model. The uncertainty in terms of 95% confi-

dence intervals is indicated by blue dashed lines. It

appears that CFSv2 can barely forecast the interannual

variability, since it only correctly forecasts the sign of the

rainfall anomaly in 10 of the 22 yr, a hit rate (i.e., the

ratio of years in which the anomaly sign is correctly

forecast to the total years) of 45.5%. In contrast, the

statistical downscaling model has considerably im-

proved the forecast with a hit rate of 77.3% and a cor-

relation coefficient of 0.51, while the RMSE is reduced

from 71.8mm in the CFSv2 forecast to 58.4mm in the

statistical downscaled results. Figures 7a and 7b show

the 1-month-lead forecast anomalies of two predictors

of SLP(2) and V850 by the CFSv2. It is clear that CFSv2

is fairly good at forecasting the two predictors with

correlation coefficients of 0.56 and 0.63 and hit rates of

63.6% and 77.2%, respectively.

In addition to the 1-month-lead forecast, additional

forecasts with lead times extending up to 6 months were

produced. Figures 6c–e show the skill of the forecasts

with lead times from 1 to 6 months based on the CFSv2

and the statistical downscaling model, respectively,

measured in terms of the correlation coefficient, RMSE,

and hit rate. In comparison with the CFSv2, the statis-

tical downscaling model shows much better skill in all

forecasts except the 3-month-lead case. In the statistical

downscaled results, the 1-month-lead forecast has the

highest skill. It is noteworthy that the forecast skill does

not monotonously decrease as lead time increases. Two

forecasts with lead times at 2 and 3 months show rela-

tively poor performance, which is primarily due to in-

ferior forecasting of the SLP(2) by the CFSv2 (Figs. 7c,d).

FIG. 7. Observed (open circles) and 1-month-lead forecast (filled circles) anomalies of predictors (a) SLP(2) and

(b) V850 by the CFSv2 during 1991–2012. (c),(d) As in Figs. 6c and 6e, respectively, but for predictors SLP(2) (solid)

and V850 (dashed) with lead times based on the CFSv2.
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To explore the ability of the statistical downscaling

model to forecast rainfall at individual stations, a sepa-

rate model was derived using the observed rainfall data

at each of 15 stations and the predictors of SLP(2) and

V850 over the training period 1951–90. By substituting

the 1-month-lead forecast values of SLP(2) and V850

from the CFSv2 into each fitted statistical equation, one

may obtain the forecast rainfall values covering a 22-yr

period (1991–2012) for each individual station. Table 2

compares the forecast skill between the statistical down-

scalingmodel and the CFSv2 at each stationmeasured in

terms of the correlation coefficient, RMSE, and hit rate.

It is obvious that combining the statistical downscal-

ing model and the predictors forecast by the CFSv2

generally provides a better degree of skill than the di-

rectly rainfall forecasts from the CFSv2. By using the

statistical downscaling model, 13 of 15 stations (87%)

have hit rates exceeding 55%, 47% of the stations have

hit rates exceeding 65%, and 13% of the stations have

hit rates exceeding 70%. This outperforms the CFSv2

forecasts in which 60% of the stations have hit rates

exceeding 55%, and none of the stations exceeds 65%.

With the exception of four stations (Anyang, Tianjin,

Taiyuan, andWeifang), the forecast skills at the other 11

stations are improved according to all of the three mea-

surements. The most significant improvement appears

at the Xingtai, Beijing, and Dezhou stations, where the

hit rates increase by 23%, 27%, and 14%, and the

correlation coefficients increase by 0.44, 0.36, and 0.42,

respectively.

6. Summary and discussion

In this study, a statistical downscaling model of NCSR

was developed with reanalysis data and applied to

forecasting NCSR over a 22-yr period using the CFSv2.

The key findings of this study are summarized as follows.

Through correlation analysis and a stepwise screening

procedure, two predictors (SLP averaged over the

southwestern IO and 850-hPa meridional winds over

eastern China) were selected to fit the multilinear re-

gression equation, which was referred to as a statistical

downscaling model of NCSR. It was further shown that

the SLP over southwestern IOwas negatively associated

with NCSR via cross-equatorial stream-induced anom-

alous meridional circulation, while the meridional wind

over eastern China was positively relevant to NCSR

through modulating the northward moisture transport.

The statistically downscaled results provided a good

representation of the observedNCSR, with a correlation

coefficient and an RMSE of 0.76 and 46.6mm (15.1%)

during the training period and 0.59 and 57.5mm (18.6%)

during the independent test period, respectively. The

statistical downscaling model was then applied to fore-

cast NCSR for a 22-yr period (1991–2012) using forecast

predictors from the CFSv2 with lead times from 1 to 6

months. The results showed much better forecast skills

than that directly from the CFSv2 for all lead months,

except the 3-month-lead example. The biggest im-

provement occurred in the 1-month-lead forecast, in

which the hit rate increased to 77.3% from 45.5% in the

CFSv2 forecast. In the forecast rainfall at 15 stations, the

statistical downscaling model also showed superior ca-

pability relative to the CFSv2, with the forecast skill

showing improvement at 73% of the stations. In par-

ticular, 87% of the stations had the hit rates exceeding

55%, 47% of the stations exceeded 65%, and 13% of the

stations exceeded 70%.

Bear in mind that the statistical downscaling model

was developed using historical reanalysis data, following

the perfect prognosis method rather than the model

output statistics method. Thus, a reliable forecast of the

predictors is necessary. As shown in Figs. 6c–e, the fore-

casts with lead times at 2 and 3 had inferior skill, which

primarily resulted from the relatively poor forecasts of

the SLP(2) by the CFSv2 (Figs. 7c,d). These two forecasts

in CFSv2 started at the beginning of May and April, re-

spectively; thus, the relatively low skill in the SLP(2)

TABLE 2. The metrics of 1-month-lead forecast summer rainfall at 15 stations during the 22-yr period (1991–2012) using the statistical

downscaling model and the CFSv2 (values in parentheses). Correlation and RMSE are the correlation coefficient and root-mean-square

error between the observed and forecast rainfall amounts during 1991–2012. Hit rate is the ratio of years in which the anomaly sign is

correctly forecast to the total number of years.

Station Correlation RMSE (mm) Hit rate (%) Station Correlation RMSE (mm) Hit rate (%)

Anyang 0.22 (0.05) 107 (104) 59 (59) Qingdao 0.27 (20.06) 131 (139) 68 (55)

Beijing 0.16 (20.18) 135 (141) 68 (41) Shijiazhuang 0.15 (20.05) 168 (172) 59 (50)

Changzhi 0.47 (0.41) 80 (83) 64 (55) Taiyuan 0.20 (0.30) 76 (74) 59 (64)

Dezhou 0.48 (0.06) 103 (118) 73 (59) Tianjin 0.06 (0.15) 110 (100) 50 (59)

Heze 0.25 (0.12) 123 (126) 55 (59) Weifang 20.25 (20.04) 110 (113) 36 (45)

Jinan 0.38 (0.18) 120 (124) 68 (50) Xingtai 0.30 (20.14) 113 (123) 59 (36)

Linfen 0.50 (0.26) 67 (74) 68 (59) Yantai 0.45 (0.23) 112 (121) 73 (64)

Linyi 0.35 (0.02) 127 (139) 68 (59)
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forecasts is likely relevant to the spring prediction barrier

in CFSv2, which warrants further investigations.

As shown above, the statistical downscaling model

significantly improved the forecast of NCSR particularly

in 1-month-lead forecasts, and there is still room for

further improvement. In this study, we only considered

circulation variables as predictors. The final results

demonstrated that the selected circulation predictors

captured most of the variability in NCSR; however, it

does not mean that other climate variables are not

necessary, especially humidity-related variables. In ad-

dition, as Lu (2003) reported, the NCSR variability has

multiscale features, and variations on different time

scales are associated with different circulation patterns.

It is appropriate to calibrate distinct empirical equations

to forecast the individual variability components. The

superiority of the time-scale decomposition approach in

the statistical downscaling of NCSR has been demon-

strated by Guo et al. (2012).

CFSv2 forecast NCSR 3 months ahead reasonably

well, but its performance in forecasts with lead times at 1

and 2 months was unexpectedly poor (Figs. 6c–e).

Meanwhile, the associated large-scale circulation, the

low-level meridional wind in eastern China (V850), was

well forecast in all three cases (Figs. 7c,d). This indicated

that CFSv2’s forecast skill for NCSR was not limited by

its forecasts for the low-level meridional wind, and some

other factors may be the source of the forecast un-

certainty, like insufficient resolution and imperfect pa-

rameterization.

This study focused on regional average summer

rainfall over north China, although we conducted fore-

casts of rainfall at individual stations within north China

as well. The predictors employed to regress the rainfall

at 15 stations were exactly the same as those for NCSR.

If we were to identify particular predictors for individual

stations and develop an empirical relationship, the

forecast skill, especially at stations like Weifang, which

has a distinctive rainfall variability among all the sta-

tions, would be further improved. In addition, the di-

minished forecast skill at the Tianjin and Taiyuan

stations possibly revealed the limitations of statistical

downscaling at sites affected by large-scale climate fac-

tors rather than at sites primarily influenced by meso-

scale and microscale processes; as are the sites in

mountainous (Taiyuan) or coastal (Tianjin) areas. Ad-

ditional reasons for the poor performance at these sta-

tions deserve deeper investigation in the future.

Finally, the statistically downscaled results are con-

strained by the quality of the predictors [e.g., SLP(2)]

used in the forecasts by the CFSv2. In this case, a better

and greater consensus about the forecast predictors

from different seasonal forecast climate models may

lead to an improved consensus of rainfall forecasts using

downscaling techniques. Future work will investigate

the application of these techniques to an ensemble of

seasonal forecast climate model results.
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