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ABSTRACT

A statistical downscaling model was developed with reanalysis data and applied to forecast northern China
summer rainfall (NCSR) using the outputs of the real-time seasonal Climate Forecast System, version 2
(CFSv2). Large-scale climate signals in sea level pressure, 850-hPa meridional wind, and 500-hPa geopotential
height as well as several well-known climate indices were considered as potential predictors. Through cor-
relation analysis and stepwise screening, two “optimal” predictors (i.e., sea level pressure over the south-
western Indian Ocean and 850-hPa meridional wind over eastern China) were selected to fit the regression
equation. Model reliability was validated with independent data during a test period (1991-2012), in which the
simulated NCSR well represented the observed variability with a correlation coefficient of 0.59 and a root-
mean-square error of 18.6%. The statistical downscaling model was applied to forecast NCSR for a 22-yr
period (1991-2012) using forecast predictors from the CFSv2 with lead times from 1 to 6 months. The results
showed much better forecast skills than that directly from the CFSv2 for all lead months, except the 3-month-
lead example. The biggest improvement occurred in the 1-month-lead forecast, in which the hit rate increased
to 77.3% from 45.5% in the CFSv2 forecast. In the forecast of rainfall at 15 stations, the statistical downscaling
model also showed superior capability when compared with the CFSv2, with forecast skill being improved at
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73% of stations. In particular, 13 of 15 stations obtained a hit rate exceeding 55%.

1. Introduction

As one of the particular focuses of the World Climate
Research Programme’s Climate Variability and Predict-
ability (CLIVAR) project, seasonal forecasting is of great
significance. Although state-of-the-art climate models
have been improved significantly and have been verified to
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be useful tools for seasonal forecasting, their forecast skill
for precipitation, especially for Asian summer monsoon
precipitation, remains limited (Wu et al. 2009; Lee et al.
2011). North China, with its enormous population and
rapid social and economic development, is located at the
northern boundary of the East Asia subtropical mon-
soon region and receives the bulk of its annual rainfall
during boreal summer, primarily falling in July and
August. The north China summer rainfall (NCSR) var-
iability is influenced by both the mid- to high-latitude
circulation patterns and the East Asian summer mon-
soon system, of which the location and magnitude of the
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FIG. 1. (a) Locations of rain gauge stations in the north China region (35°-40°N, 110°~122°E). (b) Time series of north
China July—August rainfall and its linear trend over 1951-2012.

western North Pacific subtropical high (WNPSH) play
the most important role (Zhao and Song 1999; Huang
et al. 2008). As such, NCSR has complicated variability
on both interannual and interdecadal scales (Huang
etal. 1999; Lu 2003; Fu et al. 2009). North China is one of
the regions frequently plagued by severe droughts and
floods (Wu et al. 2012a,b). Seasonal forecasting of
NCSR is an important issue that is directly related di-
saster prevention and mitigation. However, improving
the forecast skill for NCSR has long been a challenge for
Chinese meteorologists (Peng et al. 2006; Fan et al. 2009;
Wei and Huang 2010).

General circulation models (GCMs) are generally good
at simulating large-scale climate variables (e.g., mean sea
level pressure); they are unable to capture subgrid pro-
cesses, however, and fail to simulate rainfall on region-
al and subregional scales (Hewitson and Crane 2006).
Because of this limitation, a statistical downscaling tech-
nique has emerged and has experienced rapid improve-
ment in the past few decades. This technique describes
the regional climate via a statistical relationship linked
to large-scale climate signals that can be well simulated
by GCMs (Zorita and von Storch 1999; Fowler et al.
2007). The statistical downscaling technique has been
widely applied to forecasting and predicting regional
climate (Charles et al. 1999; Benestad 2002; Landman and
Goddard 2002; Oshima et al. 2002; Feddersen and
Andersen 2005; Chu et al. 2008; Zhu et al. 2008; Li and
Smith 2009; Juneng et al. 2010; Chen et al. 2012; Guo
et al. 2012; Liu and Fan 2012). With the demand for im-
proving the operational forecast skill for NCSR in mind,
in this paper we intend to develop a statistical down-
scaling model of NCSR and apply it to produce forecasts
with lead times extending to 6 month, using the National
Centers for Environmental Prediction’s (NCEP) Climate
Forecast System, version 2 (CFSv2).

The remainder of this paper is structured as follows.
Sections 2 and 3 introduce the data and the statisti-
cal downscaling scheme. The performance of the statistical

model is provided in section 4. In section 5, the statistical
model is applied to forecast NCSR and rainfall at 15
individual stations for a 22-yr period (1991-2012) using
the CFSv2. A summary and discussion are presented in
section 6.

2. Data

Observed precipitation data were obtained from
China’s 160-station monthly rainfall dataset provided by
the China Meteorological Administration (CMA) for the
period 1951-2012. The north China region was defined as
a box bounded by 35°—40°N, 110°-122°E. The averaged
summer (July and August) rainfall totals at 15 uniformly
spread stations in north China (Fig. 1a) were generated as
the NCSR time series. As shown in Fig. 1b, a significant
decreasing trend exists in NCSR during the past 62 yr that
contains remarkable interannual and decadal variations.

Reanalysis data were used to establish the statistical
downscaling model. Sea level pressure (SLP), 850-hPa
meridional wind (Vgsp), and 500-hPa geopotential height
(GHTs) were used as potential predictor variables that
represent large-scale circulation anomalies as the basis for
precipitation. Several well-known large-scale climate in-
dices were also used as potential predictors. The Nifio-3.4
index was used to represent the ENSO phenomenon
(available online at http://www.cpc.noaa.gov/data/indices/).
The southern annular mode index (SAMI) is defined as
the difference in normalized monthly zonal-mean SLP
between 40° and 70°S (Nan and Li 2003) and is available
online (at http://web.lasg.ac.cn/staff/ljp/dataset.html/). The
Indian Ocean dipole index (IODI) was calculated fol-
lowing the definition proposed by Saji et al. (1999). The
index of the latitude location of the WNPSH ridge was
calculated over 110°~150°E using the 500-hPa geopotential
height following the definition provided by the CMA. The
East Asian summer monsoon index (EASMI) is defined as
the area-averaged dynamical normalized seasonality at
850 hPa within the domain 10°-40°N, 110°-140°E (Li and
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FIG. 2. Correlation of detrended time series between NCSR and (a) sea level pressure, (b) 850-hPa meridional wind, and (c) 500-hPa
geopotential height for the period 1951-90. The shading indicates statistical significance at the 0.01 level. Red rectangles indicate areas

having high correlation coefficients.

Zeng 2002, 2003; Li et al. 2010) and is available online
(http://web.lasg.ac.cn/staff/ljp/dataset.html). The atmo-
spheric data were obtained from the NCEP-National
Center for Atmospheric Research (NCAR) reanalysis
dataset on a 2.5° X 2.5° grid, and the sea surface temper-
ature (SST) data were obtained from the Hadley Centre
SST dataset on a 1° X 1° grid.

To verify the forecast capability of the statistical
downscaling model, CFSv2 monthly data covering the
31-yr period of 1982-2012 from the retrospective fore-
cast experiment (1982-2010) and the operational fore-
cast (2011-12) were employed (Saha et al. 2012). CFSv2
is the second version of fully coupled dynamical sea-
sonal prediction systems developed at the Environmental
Modeling Center at NCEP and became operational in
2011. Tt initiated every month with an integration period
of 9 months. In every forecast, 24 members were designed
with different initial conditions (different starting times).
As a matter of convenience, only the ensemble mean,
which was calculated as the simple average of 24 mem-
bers (equal weight), was used in this study.

3. Statistical downscaling scheme

A multilinear regression approach is used to develop
the statistical downscaling model. Correlation analysis is
first used to identify potential predictors on a global
scale, from which the predictors are further selected with
a cross-validation-based stepwise regression method to fit
the final regression equation.

Given the predictor variable, we calculate the corre-
lation map between the predictor variable field and the
predictand. To avoid any relationship that may arise
from trends in the predictand as well as the predictor

variable, all data are detrended before calculating the
correlation coefficient. Any large-scale domain with
a significant correlation coefficient is identified, and the
corresponding area-weighted average value is calcu-
lated into an index as a potential predictor. A running
correlation between the potential predictor and the
predictand is then conducted to ensure a stable and ro-
bust correlated relationship. Not every potential pre-
dictor is necessary in fitting the final regression equation.
A stepwise regression method nested with leave-five-out
cross validation (Wu et al. 2009) is utilized to select the
optimal predictors from the original potential pre-
dictors. Details of this statistical downscaling scheme are
available in the study by Guo et al. (2012).

In addition, an independent test was carried by di-
viding the whole dataset into a training period (1951-90)
and an independent test period (1991-2012). To quan-
tify the uncertainty degree of the prediction, a bootstrap
resampling approach (Stine 1985) was employed to ob-
tain the 95% confidence interval from the spread of 1000
bootstrap samples with random replacement.

4. Statistical downscaling model of NCSR

Figure 2 shows the correlation maps of the detrended
time series between NCSR and three circulation fields
during the training period (1951-90). Six domains hav-
ing significant correlation coefficients at the 0.01 level
are identified, and the area-weighted average values
over these six domains are calculated into indices, labeled
as SLP(1)7(3), VgSO, and GHT(I),(z). All six indices are
significantly correlated with NCSR (Table 1). In addition,
several well-known large-scale climate indices, such as the
Nifo-3.4 index, SAMI, EASMI, the index of the latitude
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TABLE 1. Definitions of potential predictors and their correlation coefficients with NCSR for the period 1951-90.

Correlation
Variable Level Area Label Raw Detrended
Sea level pressure Surface 25°-50°N, 90°-115°E SLP() -0.6 -0.52
Sea level pressure Surface 35°-15°S, 45°-120°E SLP(,) —0.72 —0.67
15°S-5°N, 45°-85°E
Sea level pressure Surface 62.5°-52.5°S, 100°-140°E SLPg, 0.64 0.58
Meridional wind 850 hPa 20°-47.5°N, 105°-125°E 350 0.63 0.61
Geopotential height 500 hPa 10°S-10°N, 50°-130°E GHTs0001) —0.64 -0.57
Geopotential height 500 hPa 35°-20°S, 60°-95°E GHTs00(2) —0.69 —0.65

location of the WNPSH ridge, and IODI, which have
impacts on global climate, are also taken into account as
potential predictors.

To examine the stability of the correlation coefficients
between the potential predictors and NCSR, a running
correlation with a 21-yr sliding window is conducted on the
detrended time series (Fig. 3). It appears that five indices of
SLP3)_3), Vgso, and GHTsg(1)-(2) have stable significant
correlations with NCSR (at the 0.05 level), while the rest
do not have stable significant correlations with NCSR.
Therefore, the indices of SLP 5y _(3), Vigso, and GHTs0p(1)-(2)
are retained and used with the stepwise screening pro-
cedure, while the others are excluded.

In the stepwise screening procedure, the potential
predictors for SLP,y and Vgs are successively selected
into the regression equation because they produce
minimum root-mean-square errors (RMSEs) in cross
validation of 52.13 mm in step 1 and 50.11 mm in step 2,
respectively. No further decrease in RMSE is found
by adding additional predictors into the regression
equation. Thus, SLP(,) and Vg5 are selected, and the
regression equation is finally fitted in the form given by

Y (t) =320.5 — 38.8SLP, (t) + 19.6V¢s (1), (1)
where Y(¢) is NCSR at year ¢t (t=1, ..., 40) over the
1951-90 period and SLP,)(¢) and Vgs(¢) are the tth ob-
served values of the normalized indices of the SLP av-
eraged over the southwestern Indian Ocean (IO) and
the 850-hPa meridional wind averaged over eastern
China, respectively. Note that the regression coefficients
of SLP(;) and Vgsq are both found to be significantly dif-
ferent from 0 at the 0.05 level by using the Student’s ¢ test.

The empirical relationship derived between the pre-
dictors and the predictand should be physically inter-
pretable. In this regard, we explore the associated
circulations that link the predictors SLP,y and Vigso with
the NCSR.

The first predictor SLP, represents the SLP over the
southwestern IO and is associated with the ENSO-
related SST pattern (Fig. 4a). The correlation coef-
ficient between SLP(;) and the Nifio-3.4 index is 0.47
(0.49 for the detrended time series), significant at the
0.05 level. From the partial correlation map between
SLP) and the surface air temperature field after linearly
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FIG. 3. The 21-yr sliding-window correlations of NCSR with six potential predictors—
SLP(1y(3), Vgso, and GHT501)_2y—and several large-scale climate indices for the period 1951-90.

Red (green) horizontal lines denote significance
with the sliding window have been removed.

at the 0.05 (0.01) level. All trends associated



JuLy 2014

60N

GUO ET AL.

1743

30N 1

EQ -
-\‘14‘»\\\*“
A
N PN N
LI T ta » => \t
RXRRKR A 44 \
« i

L L

e~
808 T~ "N
1 > ¥

NS == N\
ey 24
120E 180

6OSB()E

4

120W

180

x
\\\\j |
A

N 7
1000 =N Q @\\‘\\ ./‘_\//

308 208 108 EQ 10N 20N 8SON 40N 50N

(e)

3
2 1

1960 1870

1980

1990 2000 2010

FIG. 4. Correlation of detrended time series between SLP(;) and (a) sea surface temperature, (b) surface air
temperature after linearly removing the Nifio-3.4 index, (c) surface winds, and (d) meridional circulation along
a latitude—pressure cross section averaged over 100°-140°E. Significance at the 0.05 level is denoted by shading in
(a), (b), and (d) and with vectors in (c), plotted only if the correlation coefficients for both the u and v directions are
significant. (¢) Normalized time series of SLP») (open circles) and NCSR (filled circles).

removing the Nifio-3.4 index (Fig. 4b), the surface air
temperature over the northwestern Pacific Ocean (west-
ern Pacific warm pool) exhibits significant correlation,
indicating that the SLP increase over the southwestern IO
is possibly relevant to the warming over the western Pa-
cific warm pool as well as the eastern tropical Pacific.
Figure 4c shows the correlation of the detrended
SLP(,y with the surface winds. It appears that, corre-
sponding to the SLP increase over the southwestern 10,
the low-level northward cross-equatorial current at 70°—
100°E is intensified. The current turns to a southwesterly
direction after crossing the equator and encountering

the northeast trade winds, enhancing the low-level
convergence in the intertropical convergence zone
over the southern South China Sea and the Philippine
Sea. Anomalous low-level convergence drives a positive
meridional circulation anomaly in the north, one branch
of which, the surface northerly anomaly on the eastern
Asian coast, inhibits the northward expansion of the
warm and wet monsoon flows. Meanwhile, the de-
scending branch of the positive meridional circulation is
approximately distributed at 40°N, resulting in north
China being under the influence of downdrafts (Fig. 4d).
Under the conditions of deficient moisture and an
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anomalous downward airstream, precipitation is sup-
pressed over north China. Figure 4e shows the normal-
ized time series of SLP ;) and NCSR. It is obvious that
a negatively correlated relationship indeed exists be-
tween these two time series. In brief, SLP ;) is negatively
associated with NCSR via a meridional circulation that
NCSR is suppressed (enhanced) when SLP ;) is a posi-
tive (negative) anomaly.

The second predictor Vgs, represents the meridional
wind over eastern China. Figure 5a shows a correlation
map of the detrended time series between Vgso and the
horizontal winds and geopotential height at 850 hPa.
Corresponding to the positive Vgso anomaly (i.e., the
southerly anomaly), an anomalous cyclone appears in
eastern Asia, and an anomalous anticyclone appears in
the northwestern Pacific. The composite of 500-hPa
geopotential height and the WNPSH ridge in the
strong and weak Vgso cases (anomalies exceeding one
standard deviation in the detrended time series) are
shown in Fig. 5b. It is obvious that a northward shift of the
western part of the WNPSH concurrently occurs with
the anomalous strong Vgso. The correlation coefficient

between the index of latitude location of the WNPSH
ridge and Vs is 0.29, which is significant at the 0.05 level.
This suggests that the latitude location of the WNPSH
ridge may affect the meridional wind over eastern China
that modulates the water vapor transport from the South
China Sea and the western Pacific to north China. If Vg5 is
a positive anomaly, more warm and humid air is trans-
ported to the north, resulting in an anomalous wet sum-
mer in north China and vice versa. This result is consistent
with the findings reported upon in the study of Li et al.
(2012). Figure 5c shows the normalized time series of Vs
and NCSR, revealing the generally consistent variation.
Figure 6a compares the observed and simulated
rainfall amounts during both the training period (1951—
90) and the independent test period (1991-2012). The
uncertainty in terms of 95% confidence intervals is in-
dicated with blue dashed lines. In general, the statistical
model provides a relatively accurate representation of
the observations. The performance evident in the training
period is mostly maintained during the subsequent veri-
fication period. The correlation coefficient and RMSE
between the simulated and observed rainfall amounts are
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with lead times based on the statistical downscaling model (red) and the CFSv2 (green) as measured by (c) correlation coefficient,
(d) RMSE, and (e) hit rate, the ratio of years in which the anomaly sign is correctly forecast to the total number of years.

0.76 and 46.6 mm (15.1% of the climatology) during the
training period and 0.59 and 57.5 mm (18.6% of the cli-
matology) during the independent test period.

5. Application of the statistical downscaling model
to forecasting NCSR

To test the forecast capability of NCSR using the
statistical downscaling model in Eq. (1), a forecast

experiment for a 22-yr period (1991-2012) was per-
formed using the predictors forecast ahead by the CFSv2.
To reduce the systematic bias in CFSv2, such as cli-
matology drift, we first adjusted the CFSv2 output by
correcting the climatology bias. On account of the
limited extension of the CFSv2 retrospective forecast
data (starting from 1982), the climatology bias was
calculated based on the period starting from 1982 to the
prior year.
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Figure 6b shows the 1-month-lead NCSR anomaly
forecast by both the CFSv2 and the statistical down-
scaling model. The uncertainty in terms of 95% confi-
dence intervals is indicated by blue dashed lines. It
appears that CFSv2 can barely forecast the interannual
variability, since it only correctly forecasts the sign of the
rainfall anomaly in 10 of the 22 yr, a hit rate (i.e., the
ratio of years in which the anomaly sign is correctly
forecast to the total years) of 45.5%. In contrast, the
statistical downscaling model has considerably im-
proved the forecast with a hit rate of 77.3% and a cor-
relation coefficient of 0.51, while the RMSE is reduced
from 71.8 mm in the CFSv2 forecast to 58.4 mm in the
statistical downscaled results. Figures 7a and 7b show
the 1-month-lead forecast anomalies of two predictors
of SLP(y) and Vgso by the CFSv2. It is clear that CFSv2
is fairly good at forecasting the two predictors with

correlation coefficients of 0.56 and 0.63 and hit rates of
63.6% and 77.2%, respectively.

In addition to the 1-month-lead forecast, additional
forecasts with lead times extending up to 6 months were
produced. Figures 6¢c—e show the skill of the forecasts
with lead times from 1 to 6 months based on the CFSv2
and the statistical downscaling model, respectively,
measured in terms of the correlation coefficient, RMSE,
and hit rate. In comparison with the CFSv2, the statis-
tical downscaling model shows much better skill in all
forecasts except the 3-month-lead case. In the statistical
downscaled results, the 1-month-lead forecast has the
highest skill. It is noteworthy that the forecast skill does
not monotonously decrease as lead time increases. Two
forecasts with lead times at 2 and 3 months show rela-
tively poor performance, which is primarily due to in-
ferior forecasting of the SLP ;) by the CFSv2 (Figs. 7c.d).
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TABLE 2. The metrics of 1-month-lead forecast summer rainfall at 15 stations during the 22-yr period (1991-2012) using the statistical
downscaling model and the CFSv2 (values in parentheses). Correlation and RMSE are the correlation coefficient and root-mean-square
error between the observed and forecast rainfall amounts during 1991-2012. Hit rate is the ratio of years in which the anomaly sign is

correctly forecast to the total number of years.

Station Correlation RMSE (mm) Hit rate (%) Station Correlation RMSE (mm) Hit rate (%)
Anyang 0.22 (0.05) 107 (104) 59 (59) Qingdao 027 (—0.06) 131 (139) 68 (55)
Beijing 0.16 (—0.18) 135 (141) 68 (41) Shijiazhuang 0.15 (—0.05) 168 (172) 59 (50)
Changzhi  0.47 (0.41) 80 (83) 64 (55) Taiyuan 0.20 (0.30) 76 (74) 59 (64)
Dezhou 0.48 (0.06) 103 (118) 73 (59) Tianjin 0.06 (0.15) 110 (100) 50 (59)
Heze 025 (0.12) 123 (126) 55 (59) Weifang —0.25 (—0.04) 110 (113) 36 (45)
Jinan 0.38 (0.18) 120 (124) 68 (50) Xingtai 0.30 (—0.14) 113 (123) 59 (36)
Linfen 0.50 (0.26) 67 (74) 68 (59) Yantai 0.45 (0.23) 112 (121) 73 (64)
Linyi 0.35 (0.02) 127 (139) 68 (59)

To explore the ability of the statistical downscaling
model to forecast rainfall at individual stations, a sepa-
rate model was derived using the observed rainfall data
at each of 15 stations and the predictors of SLP(,y and
Vsso over the training period 1951-90. By substituting
the 1-month-lead forecast values of SLP»y and Vgsg
from the CFSv2 into each fitted statistical equation, one
may obtain the forecast rainfall values covering a 22-yr
period (1991-2012) for each individual station. Table 2
compares the forecast skill between the statistical down-
scaling model and the CFSv2 at each station measured in
terms of the correlation coefficient, RMSE, and hit rate.
It is obvious that combining the statistical downscal-
ing model and the predictors forecast by the CFSv2
generally provides a better degree of skill than the di-
rectly rainfall forecasts from the CFSv2. By using the
statistical downscaling model, 13 of 15 stations (87%)
have hit rates exceeding 55%, 47 % of the stations have
hit rates exceeding 65%, and 13% of the stations have
hit rates exceeding 70%. This outperforms the CFSv2
forecasts in which 60% of the stations have hit rates
exceeding 55%, and none of the stations exceeds 65%.
With the exception of four stations (Anyang, Tianjin,
Taiyuan, and Weifang), the forecast skills at the other 11
stations are improved according to all of the three mea-
surements. The most significant improvement appears
at the Xingtai, Beijing, and Dezhou stations, where the
hit rates increase by 23%, 27%, and 14%, and the
correlation coefficients increase by 0.44, 0.36, and 0.42,
respectively.

6. Summary and discussion

In this study, a statistical downscaling model of NCSR
was developed with reanalysis data and applied to
forecasting NCSR over a 22-yr period using the CFSv2.
The key findings of this study are summarized as follows.

Through correlation analysis and a stepwise screening
procedure, two predictors (SLP averaged over the

southwestern IO and 850-hPa meridional winds over
eastern China) were selected to fit the multilinear re-
gression equation, which was referred to as a statistical
downscaling model of NCSR. It was further shown that
the SLP over southwestern IO was negatively associated
with NCSR via cross-equatorial stream-induced anom-
alous meridional circulation, while the meridional wind
over eastern China was positively relevant to NCSR
through modulating the northward moisture transport.
The statistically downscaled results provided a good
representation of the observed NCSR, with a correlation
coefficient and an RMSE of 0.76 and 46.6 mm (15.1%)
during the training period and 0.59 and 57.5 mm (18.6%)
during the independent test period, respectively. The
statistical downscaling model was then applied to fore-
cast NCSR for a 22-yr period (1991-2012) using forecast
predictors from the CFSv2 with lead times from 1 to 6
months. The results showed much better forecast skills
than that directly from the CFSv2 for all lead months,
except the 3-month-lead example. The biggest im-
provement occurred in the 1-month-lead forecast, in
which the hit rate increased to 77.3% from 45.5% in the
CFSv2 forecast. In the forecast rainfall at 15 stations, the
statistical downscaling model also showed superior ca-
pability relative to the CFSv2, with the forecast skill
showing improvement at 73% of the stations. In par-
ticular, 87% of the stations had the hit rates exceeding
55%,47% of the stations exceeded 65%, and 13% of the
stations exceeded 70%.

Bear in mind that the statistical downscaling model
was developed using historical reanalysis data, following
the perfect prognosis method rather than the model
output statistics method. Thus, a reliable forecast of the
predictors is necessary. As shown in Figs. 6¢c—e, the fore-
casts with lead times at 2 and 3 had inferior skill, which
primarily resulted from the relatively poor forecasts of
the SLP ) by the CFSv2 (Figs. 7c,d). These two forecasts
in CFSv2 started at the beginning of May and April, re-
spectively; thus, the relatively low skill in the SLP )
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forecasts is likely relevant to the spring prediction barrier
in CFSv2, which warrants further investigations.

As shown above, the statistical downscaling model
significantly improved the forecast of NCSR particularly
in 1-month-lead forecasts, and there is still room for
further improvement. In this study, we only considered
circulation variables as predictors. The final results
demonstrated that the selected circulation predictors
captured most of the variability in NCSR; however, it
does not mean that other climate variables are not
necessary, especially humidity-related variables. In ad-
dition, as Lu (2003) reported, the NCSR variability has
multiscale features, and variations on different time
scales are associated with different circulation patterns.
It is appropriate to calibrate distinct empirical equations
to forecast the individual variability components. The
superiority of the time-scale decomposition approach in
the statistical downscaling of NCSR has been demon-
strated by Guo et al. (2012).

CFSv2 forecast NCSR 3 months ahead reasonably
well, but its performance in forecasts with lead times at 1
and 2 months was unexpectedly poor (Figs. 6c—e).
Meanwhile, the associated large-scale circulation, the
low-level meridional wind in eastern China (Vgsg), was
well forecast in all three cases (Figs. 7c,d). This indicated
that CFSv2’s forecast skill for NCSR was not limited by
its forecasts for the low-level meridional wind, and some
other factors may be the source of the forecast un-
certainty, like insufficient resolution and imperfect pa-
rameterization.

This study focused on regional average summer
rainfall over north China, although we conducted fore-
casts of rainfall at individual stations within north China
as well. The predictors employed to regress the rainfall
at 15 stations were exactly the same as those for NCSR.
If we were to identify particular predictors for individual
stations and develop an empirical relationship, the
forecast skill, especially at stations like Weifang, which
has a distinctive rainfall variability among all the sta-
tions, would be further improved. In addition, the di-
minished forecast skill at the Tianjin and Taiyuan
stations possibly revealed the limitations of statistical
downscaling at sites affected by large-scale climate fac-
tors rather than at sites primarily influenced by meso-
scale and microscale processes; as are the sites in
mountainous (Taiyuan) or coastal (Tianjin) areas. Ad-
ditional reasons for the poor performance at these sta-
tions deserve deeper investigation in the future.

Finally, the statistically downscaled results are con-
strained by the quality of the predictors [e.g., SLP ()]
used in the forecasts by the CFSv2. In this case, a better
and greater consensus about the forecast predictors
from different seasonal forecast climate models may
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lead to an improved consensus of rainfall forecasts using
downscaling techniques. Future work will investigate
the application of these techniques to an ensemble of
seasonal forecast climate model results.
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